APRIL 14-19 2024

realization

organization

Maximising the value of geotechnical logging

By Christopher Mears MSc CEng MIMMM SRK Consulting (UK)

Introduction

Why maximise?

- 1. Data quality is critical
- 2. Data collection is **complicated**
- 3. Data collection is **expensive**

...all data analysis, however intelligent, can only ever be as accurate as the data that went into it

Introduction

Maximising the value of geotechnical logging

1. Purpose

2. Problems

3. Solution

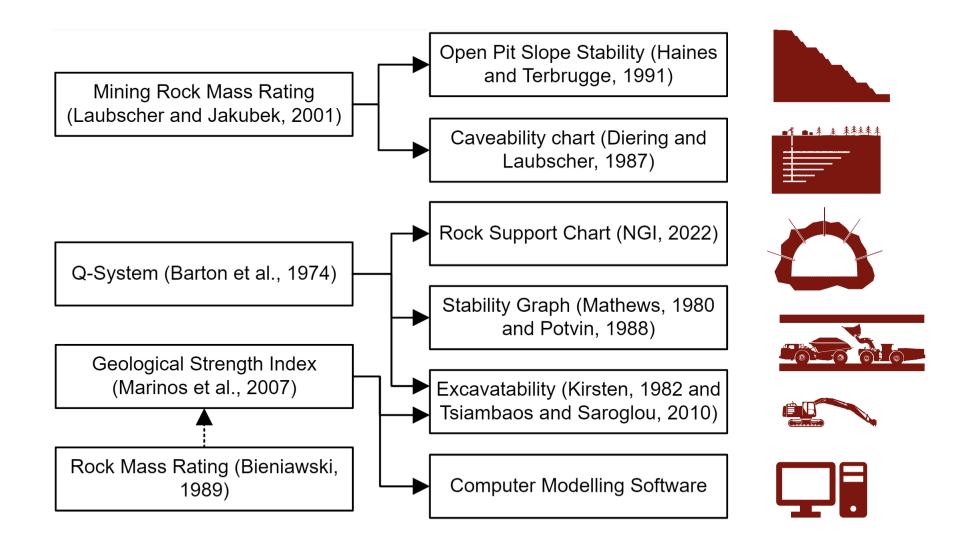
Why? How?

Purpose (1/3)

"Rock mass characterization should be used to determine the intrinsic properties of the rock mass, independently of the application... Rock mass characterization should be generic in nature, capturing the basic input parameters... Rock mass characterization is the background fieldwork required to perform rock mass classification."

Potvin et al. (2012)

Purpose (2/3)



For rock materials, there are three well established classification systems that are commonly used in the mining industry:

- 1. Rock Mass Rating (RMR89) originally published in 1976 and adjusted in 1989 (Bieniawski, 1976, 1989)
- 2. Q-system (Q) (Barton et al., 1974)
- **3. Mining Rock Mass Rating (MRMR)** published in 1990 and updated in 2000 and 2001 by Laubscher and Jakubek (Laubscher, 1990; Jakubek and Laubscher, 2000; Laubscher and Jakubek, 2001)

Purpose (3/3)

Problems

- Rigidity of systems
- System not generally designed for logging
- Poorly understood
- Expensive
- Time consuming
- Monotomous
- Complex
- Inconsistent
- Involves multiple personnel, varying knowledge and ability
- Difficult

Often the main problems are about ergonomics (people's efficiency in their working environment), and not 'technical'.

Unreliable data gives unreliable outcomes.

Solution

Unified Logging System (ULS)

Aim: Increase reliability of geotechnical logging data whilst reducing the complexity of the process

Method: Breakdown the three main logging systems into common basic inputs

that can be logged efficiently, accurately and consistently

Outcome: A simplified system that produces a more reliable database that can be

used to derive RMR, MRMR and Q

Note: This is **not** a new classification system, but a new method of data capture to derive inputs for existing classifications

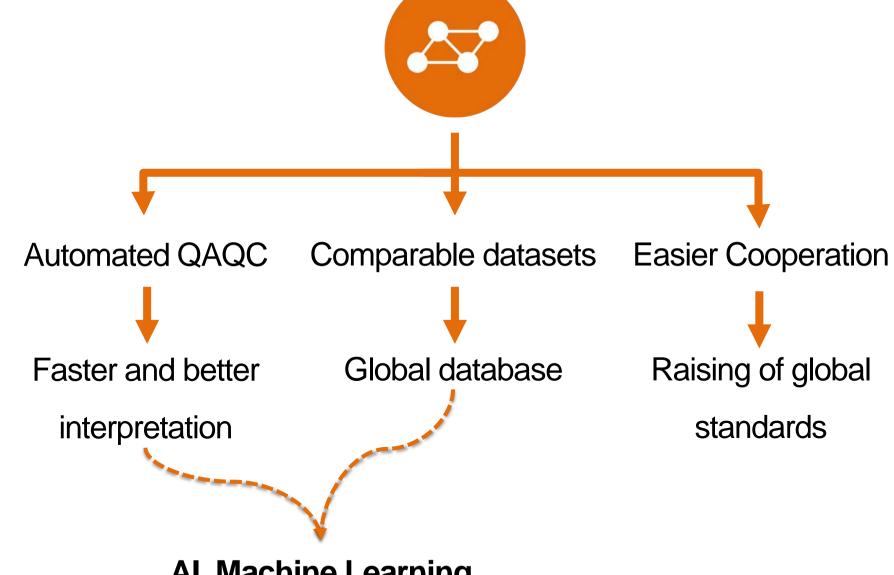
Solution



How?

'Classic' approach

Inputs \longrightarrow dRMR89 \longrightarrow RMR89
Inputs \longrightarrow Q-prime \longrightarrow Q-system
Inputs \longrightarrow iRMR \longrightarrow MRMR



Solution

Why?

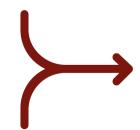
AI, Machine Learning

Unified Logging System @

Breakdown of classification systems:

Classification System	Author, Date	Primary	Secondary Characterisation Parameter [†]		
		Characterisation	Name	Acronym	
		Parameter			
Mining Rock Mass Rating	Laubscher and		(1) Rock Block Strength	RBS	
		iRMR	(2) Fracture Frequency	FF	
(MRMR)	Jakubek, 2001		(3) Joint Conditions	JC	
	Bieniawski, 1989		(1) Intact Rock Strength	IRS	
Pock Mass Pating (PMP90)		dRMR89	(2) Rock Quality Designation	RQD	
Rock Mass Rating (RMR89)			(2) Joint Spacing	JS	
			(3) Joint Conditions	JC ₈₉ *	
			(2) Rock Quality Designation	RQD	
O avetare (O)	Barton, 1974		(2) Joint Set Number	Jn	
Q-system (Q)		Q-prime	(3) Joint Roughness Number	Jr	
			(3) Joint Alteration Number	Ja	

^{*} JC₈₉ denotes Joint Conditions from RMR₈₉ (to distinguish from JC of MRMR)


^{† (1)} denotes parameters assessing the "intact" rock strength, (2) the open discontinuity spacing (or block size), and (3) the conditions of the open discontinuities

Unified Logging System @

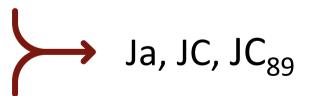
Finding common basic inputs ('Primary data'):

Primary	Secondary Characterisation	Primary data					
on Parameter		Constitution leaders 40 and a state of leading					
	RQD	Sum of intact core lengths >10 cm over interval length					
	Jn	Number of joint sets					
	Jr	Small-scale roughness of open discontinuities					
		Large-scale surface roughness of discontinuities					
Q-prime		Separation of discontinuities					
		Infill Thickness of open discontinuities					
	Ja	Infill Strength of open discontinuities					
		Infill Mineral of open discontinuities					
		Weathering of open discontinuity wall					
		ISRM field estimate					
		Microdefect intensity					
	RBS	Microdefect strength					
		Spacing of closed discontinuities					
		Infill strength of closed discontinuities					
	FF	Spacing of open discontinuities					
:DNAD	rr	Number of joint sets					
iRMR		Large-scale surface roughness of discontinuities					
		Small-scale roughness of open discontinuities					
		Separation of open discontinuities					
	JC	Infill thickness of open discontinuities					
		Infill Strength of open discontinuities					
		Infill mineral of open discontinuities					
		Weathering of open discontinuity wall					
	IRS	ISRM field estimate					
	RQD	Sum of intact core lengths <10 cm over interval length					
	JS	Spacing of open discontinuities					
		Small-scale roughness of open discontinuities					
dRMR ₈₉		Separation of open discontinuities					
0.5	10	Infill Thickness of open discontinuities					
	JC ₈₉	Infill Strength of open discontinuities					
		Weathering of open discontinuity wall					
		Persistence of open discontinuities					

Primary Data (duplicates removed)	Derived Secondary Characterisation Parameter	Parameter Group	
Sum of intact core lengths >10 cm over interval length Number of Joint Sets	- RQD, Jn, JS, FF	Spacing of open discontinuities	
Spacing of Open Discontinuities	-	(block size)	
Large-Scale Surface Roughness of Discontinuities	_		
Small-Scale Roughness of Open Discontinuities	_		
Separation of Discontinuities	-	Conditions of	
Infill Thickness of Open Discontinuities	Jr, Ja, JC	open	
Infill Strength of Open Discontinuities	_	discontinuities	
Infill Mineral of Open Discontinuities	_		
Weathering of Open Discontinuity Wall			
Persistence of Open Discontinuities	-		
ISRM Field Estimate	_		
Spacing of Closed Discontinuities	-	Late et es el	
Infill Strength of Closed Discontinuities	RBS, IRS	Intact rock	
Microdefect Intensity	-	strength	
Microdefect Strength			

Unified Logging System

Parameter Group	Primary Data	Derived Secondary Characterisation Parameter ('x' signifies not used)			
·	·	Q-prime	iRMR	dRMR89	
	Sum of intact core lengths >10 cm over interval length	RQD x		RQD	
Spacing of open discontinuities (block size)	Number of Joint Sets	Jn		Х	
	Spacing of Open Discontinuities	х	FF	JS	
	Large-Scale Surface Roughness of Discontinuities	l w		х	
	Small-Scale Roughness of Open Discontinuities	- Jr			
	Separation of Discontinuities				
	Infill Thickness of Open Discontinuities	Ja	JC		
Condition of open discontinuities	Infill Strength of Open Discontinuities			JC ₈₉	
	Infill Mineral of Open Discontinuities				
	Weathering of Open Discontinuity Wall	-			
	Persistence of Open Discontinuities	Х	х		
	ISRM Field Estimate	х		IRS	
	Spacing of Closed Discontinuities	х		x	
Intact rock strength	Infill Strength of Closed Discontinuities	Х	RBS	х	
	Microdefect Intensity	х		х	
	Microdefect Strength	х		х	



Example simplification – Joint infill conditions:

Joi	nt Alteration Number	Ja				
	a. Rock wall contact					
A	Tightly healed, hard, non-softening, impermeable filling, i.e., quartz or epidote.	0.75				
В	Unaltered joint walls, surface staining only.	1				
С	Slightly altered joint walls. Non-softening mineral coatings; sandy particles, clay-free disintegrated rock, etc.					
D	Silty or sandy clay coatings, small clay fraction (non-softening).					
Е	Softening or low friction clay mineral coatings, i.e., kaolinite or mica. Also chlorite, talc gypsum, graphite, etc., and small quantities of swelling clays.	4				
	b) Rock-wall contact before 10 cm shear (thin mineral fillings)					
F	Sandy particles, clay-free disintegrated rock, etc.	4				
G	Strongly over-consolidated, non-softening, clay mineral fillings (continuous, but <5 mm thickness).	6				
Н	Medium or low over-consolidation, softening, clay mineral fillings (continuous, but <5 mm thickness).					
J	Swelling-clay fillings, i.e., montmorillonite (continuous, but <5 mm thickness). Value of Ja depends on percent of swelling clay-size particles.	8.0 - 12.0				
	c) No rock-wall contact when sheared (thick mineral fillings)					
K	Zones or bands of disintegrated or crushed rock. Strongly over-consolidated.	6				
L	Zones or bands of clay, disintegrated or crushed rock. Medium or low over-consolidation or softening fillings.	8				
M	Zones or bands of clay, disintegrated or crushed rock. Swelling clay. Ja depends on percent of swelling clay-size particles.	8.0 - 12.0				
N	Thick continuous zones or bands of clay. Strongly over-consolidated.	5				
О	Thick, continuous zones or bands of clay. Medium to low over-consolidation.	10.0 - 13.0				
P	Thick, continuous zones or bands with clay. Swelling clay. Ja depends on percent of swelling clay-size particles.	6.0 - 24.0				

Mineral Thickness Mineral Strength (Mohs) Mineral Type Joint Wall Weathering

Other adjustments

Interval determination (geotechnical domaining):

Interval Determination	Description	Advantages	Disadvantages
Run by run	Intervals are begun and ended at the beginning and end of each drill run (typically 1.50 or 3.00 m length)	 Simple and systematic - it is easy to determine the start and end of intervals for non-experienced loggers Enables record of orientation quality (which is performed for each individual run) More consistent lengths make scale-dependent parameters, such as RQD, more directly comparable across intervals Reduces opportunity to 'lump' intervals into larger intervals, which may mask important features, such as faults 	 Often more time intensive and potentially less efficient, as more intervals will ultimately be logged, many of which may have similar or the same properties as the runs before and after them Features shorter than the run scale may be averaged-out or masked in the interval as it does not change for varying geotechnical properties
Geotechnical properties ('domains')	Intervals are begun and ended where the geotechnical properties of the core, such as strength, structural composition or lithology change	same geotechnical properties can be massed together, saving repetition • Smaller features can be given their own intervals and thereby highlighted as having different geotechnical properties (where	 Requires a degree of experience and geotechnical understanding to determine start and end Can encourage the 'lumping' together of geotechnically dissimilar zones to save time. A separate log is required to record orientation quality, as many orientation lines with exist in one interval Scale-dependent parameters such as RQD are not measured over consistent lengths. The preliminary geotechnical domains that are defined by the intervals cannot be easily altered as changing these will require altering the interval length and thereby recalculating scale-dependent parameters such as RQD.

recalculating scale-dependent parameters such as RQD.

Other adjustments

Flexible 'hybrid' domaining:

BHID	From (m)	To (m)	TCR (m)	RQD (m)	Length (m)	TCR (%)	RQD (%)	IRS	Ori confidence	Jn
GT001	30.00	33.00	3.00	3.00	3.00	100	100	R3	High	One set
GT001	33.00	36.00	3.00	2.67	3.00	100	89	R3	High	One set
GT001	36.00	39.00	3.00	2.98	3.00	100	99	R3	High	One set
GT001	39.00	42.00	3.00	1.79	3.00	100	60	R3	High	One set
GT001	42.00	45.00	3.00	3.00	3.00	100	100	R2	Medium	One set
GT001	45.00	48.00	3.00	3.00	3.00	100	100	R2	Medium	One set
GT001	48.00	51.00	2.00	1.20	3.00	67	40	R1	Low	Three + R
GT001	51.00	54.00	1.50	1.00	3.00	50	33	R1	Low	Three + R
GT001	54.00	57.00	1.40	0.87	3.00	47	29	R1	Low	Three + R
GT001	57.00	60.00	2.90	2.00	3.00	97	67	R1	Low	Three + R
GT001	60.00	63.00	3.00	3.00	3.00	100	100	R3	Medium	Two sets
GT001	63.00	66.00	2.90	2.80	3.00	97	93	R3	Medium	Two sets

Logging with a maximum interval length of the run length enables the capture of recovery, RQD and orientation confidence, whilst these intervals can then be further reduced to capture smaller details within runs. The use of Jn to define preliminary domains across these intervals generates 'flexible' geotechnical domains that can be adjusted if deemed necessary.

Summary & Conclusions

- 1. Attaining reliable geotechnical data from core logging is critical to effective mine design and safety
- 2. Geotechnical core logging is a costly, complex and difficult process and standards vary greatly across the mining industry
- 3. Human factors such as knowledge, understanding, fatigue, time-constraints and ergonomics must be considered as critical to data collection quality
- 4. A system that records the basic inputs common to the three main logging systems has been shown to increase **efficiency**, **accuracy** and **consistency** of geotechnical logging, whilst also increasing the granularity of the dataset produced and their downstream use i.e the **value** of the datasets is **maximised**.

