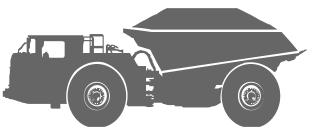


Ventilation Tradeoff Study Considering Switch to Battery Electric Vehicles (BEV)

Nathan Wineinger

Consultant (Mine Ventilation), SRK Mine Ventilation Services

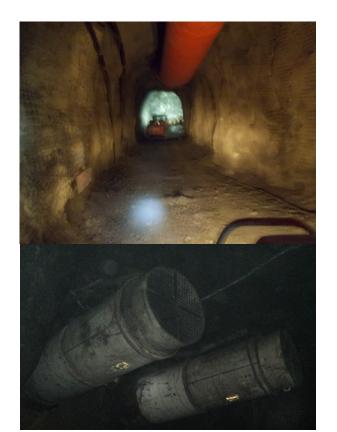
Clovis, California, USA


Introduction

- BEV study completed for a new mine in Colombia
- In response to a Feasibility Study - Scoping Study
- High ventilation power demands
- Replace diesel trucks and loaders with BEV equivalents

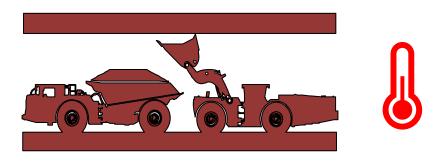
Key Assumptions and Design Considerations

- BEV substitutions only considered for LHDs and Haul Trucks
- 0.06 m3/s per kW Colombian Regulations 0.09 0.13 m3/s per kW
 - Variance sought for this.
 - Airflow requirements for secondary and maintenance equipment considered.
- 60-tonne diesel trucks and 18-tonne diesel LHDs used in original diesel study.
 - BEV equipment of that size do not yet exist Assumed they would.

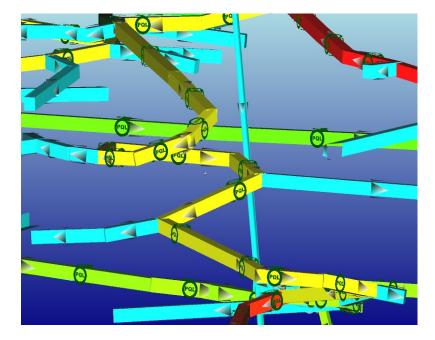


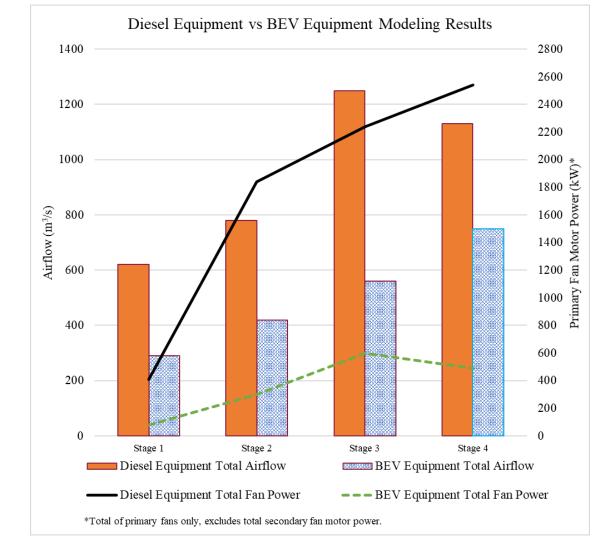
Assumptions and Considerations cont.

- Potential equip. fires not considered at this stage
 - Lower airflow in mine → more significant fire effects
 - High concentrations of HF gas released

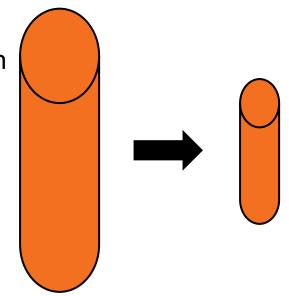

Assumptions and Considerations cont.

- Traffic patterns and mine development schedule assumed not to change
 - Type of BEV chosen can affect mine layout
 - Regenerative braking
 - Strategic locations of charging stations
 - Scoping Level study
- Secondary ventilation auxiliary fans and headings
 - Unchanged from diesel study maintain blast clearing times


Heat Generation Calculations

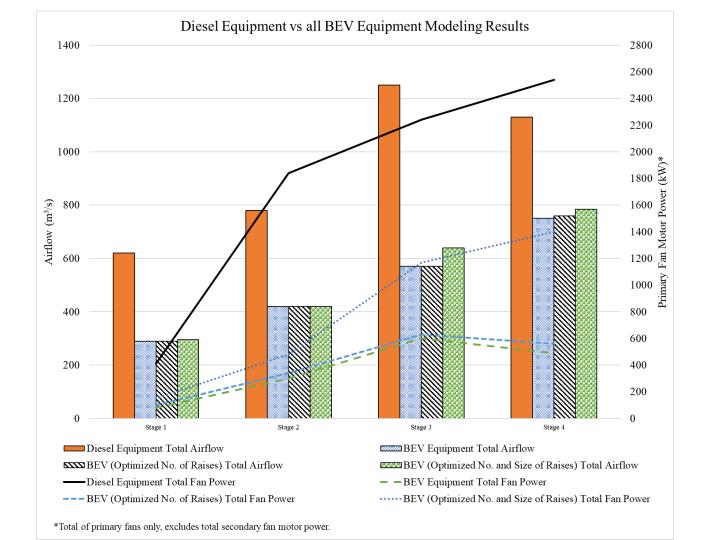

- Diesel Study High heat generation large number of equip.
- BEV study Trucks/LHDs 1/3 of the heat of diesel equivalent.
- Assume larger not yet existing BEV equip scale similarly
- Add in extra heat for secondary equipment -50% Truck/LHD heat of diesel models
- Additional secondary equipment not modeled intermittent operation

Calculations and Results


- Four Ventilation modeling stages developed based on original study.
- Original infrastructure left as is since equipment sizes assumed to be similar
- Airflow requirements primarily based on ventilating secondary equipment
- Results show reduction in required airflow of 50% with 80% reduction in power.

Additional modeling stages

- With significant reduction in airflow reduce mine infrastructure
 - Ramp, level, and drift changes based on equipment envelops (not changed)
 - Number of raises could be reduced
 - Size of remaining raises could be reduced

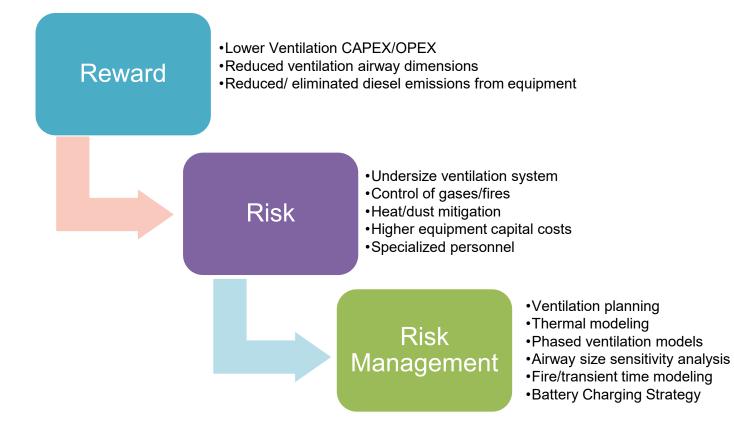


Raises Infrastructure Savings

	Iotal Raise Volume
Model Description	Saved (m ³)
Original BEV equip./Diesel equip. study	
BEV equip., optimized size of raises	10,000
	440.000

BEV equip., optimized number and size of raises

110,000


Discussion of Results

- Potential for significant ventilation power cost savings
- Potential for significant reduction in size/# of raises
 - Caution ventilation should drive production not limit it.
 - If BEV is chosen to size raises, then diesel chosen later Undersized!
- Reduced power for ventilation, but increased power for BEVs
- Do mines have the available electrical capacity?
- Power grid strategy needs to be considered to avoid spikes in usage

Discussion of Results cont.

- Diesel vs BEV new capital costs BEVs cost 125% of Diesel equivalent
- Specialized mechanics, electricians, other technical staff different than needed for an all-diesel fleet.
- If battery swap-out chosen, how many swaps per shift?
 - Function of shift length, elevation changes, haul distances, etc.
- Limited data available (maintenance, longevity, reliability, dependability, etc)

Conclusions

Questions?

Nathan Wineinger Consultant Mine Ventilation Services, a business unit of SRK Consulting, (U.S.), Inc. +1 (559) 452 0182 nwineinger@srk.com

