

Implementing multi century hourly stochastic precipitation using CMIP6 - A trade-off approach

Victor Muñoz S.¹,

Mehmetcan Ozkadioglu²

¹ SRK Consulting, Vancouver, Canada

² SRK Consulting, Johannesburg, South Africa

Introduction

Objective	Landform design requirements => 300 yrs. 30 min (limited records)	a. precipitation in South Africa
Problem	 Current climate change models only provide projections up until the year 2100. Most of GCM are at daily scale. SA does not great historical records. 	
Study Focus	South Africa, open source precipitation available 2 Limitations for historical records and support proj under climate change.	
Methodology	Baseline Meteorology for precipitation Stochastic precipitation model Global circulation model (GCM)	25'S 30'S 10'E 15'E 20'E 25'S 10'E 15'E 20'E 25'E 30'E 30'E 30'E 40'E

Climatic Influence

Mean annual precipitation Background: CHIRPS, Points: South African DB

CHIRPS

MERRA2

GPM

ERA5-Land

Historical Precipitation

- Quantile Delta Mapping (QDM) was applied to bias correct CHIRPS to extend Maartenshoop data.
- CHIRPS / GPM showed similar elevation gradients with SAWS, with GPM being more regionally representative; however, it does not match Maartenshoop record extension.

Historical Precipitation

- Both extended Maartenshoop and 30-min GPM data showed an average annual rainfall of ~700 mm/year from 2000-2021, confirming their regional accuracy.
- Daily: Maartenshop extended with CHIRPS with QDM
- Hourly: GPM at Maartenshoop

Stochastic Precipitation

Stochastic model: Bartlett-Lewis Poisson Process (Hyetos Minute)

- The Bartlett-Lewis rectangular pulse model detailed by Rodriguez-Iturbe et al. (1987).
- Implementation by R library HyetosMinute (Mazi et al, 2020).

Stochastic Precipitation - Historical

Stochastic model: Bartlett-Lewis Poisson Process (Hyetos Minute)

• mean,

- variance,
- Covariance; and,
 - dry period probability

Parameters: λ , α , v, κ , ϕ , ω , and μ X

Climate change evaluation

- Data Source: NEX-GDDP.
- Bias Correction: NEX-GDDP => Bias Corrected Maartenshoop with CHIRPS data (daily)
- GCM Evaluation: A total of 127 GCMs for four greenhouse gas emission scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). Period: 2070 to 2099.

Stochastic Precipitation – Climate Change

1 hr. => GPM at Maartenshoop, GCM scaled¹
6 hrs. => GPM at Maartenshoop, GCM scaled¹
12hrs => GPM at Maartenshoop, GCM scaled¹
24 hrs=> GCM corrected by Maartenshop extended with CHIRPS with QDM

Covariance; and,

mean,

variance,

dry period
 probability

Parameters: λ , α , v, κ , ϕ , ω , and μX

¹ Scaled to align historical GCM with GPM at Maartenshoop

worldcongress2023.iahr.org

Stochastic Precipitation – Climate Change

1 hr. => GPM at Maartenshoop, GCM scaled¹
6 hrs. => GPM at Maartenshoop, GCM scaled¹
12hrs => GPM at Maartenshoop, GCM scaled¹
24 hrs=> GCM corrected by Maartenshop extended with CHIRPS with QDM

Covariance; and,

 dry period probability

Parameters: λ , α , v, κ , ϕ , ω , and μ X

¹ Scaled to align historical GCM with GPM at Maartenshoop

X 127

Stochastic evaluation - Historical

Stochastic evaluation - Historical

(C)

Historical - maximum precipitation in 6, 12 and 24 hrs

MOUNTAINS AND COASTS

Climate change evaluation - Projection

Time series selected as representative for the GCM variability

notes: arbitrarily red lines selected as a site references for GCM models

Summary

- Landform design => hourly precipitation data ranging 100 to 1000 years. However, the output do not align with the Global Climate Model (GCM) results.
- This approach aims to encapsulate GCM variability, but questions remain about the Bartlett-Lewis pulse's capability to accurately mirror this variability.
- The presented methodology is not a definitive solution for GCM integration. Instead, it's an attempt (trade-off) to infuse GCM into the hourly results.

Thanks for your attention in this almost last presentation!

Well done yourself!

Any question?

